深入浅解正则表达式在Java中的使用

介绍

•正则表达式一般用于字符串匹配, 字符串查找和字符串替换. 别小看它的作用, 在工作学习中灵活运用正则表达式处理字符串能够大幅度提高效率, 编程的快乐来得就是这么简单.

•一下子给出一堆匹配的规则可能会让人恐惧, 下面将由浅入深讲解正则表达式的使用.

从简单例子认识正则表达式匹配

•先上代码

public class Demo1 {
 public static void main(String[] args) {
 //字符串abc匹配正则表达式"...", 其中"."表示一个字符
 //"..."表示三个字符
 System.out.println("abc".matches("..."));

 System.out.println("abcd".matches("..."));
 }
}
//输出结果
true
false

•String类中有个matches(String regex)方法, 返回值为布尔类型, 用于告诉这个字符串是否匹配给定的正则表达式.
•在本例中我们给出的正则表达式为..., 其中每个.表示一个字符, 整个正则表达式的意思是三个字符, 显然当匹配abc的时候结果为true, 匹配abcd时结果为false.

Java中对正则表达式的支持(各种语言有相应的实现)

•在java.util.regex包下有两个用于正则表达式的类, 一个是Matcher类, 另一个Pattern. Java官方文档中给出对这两个类的典型用法, 代码如下:

public class Demo1 {
 public static void main(String[] args) {
 //字符串abc匹配正则表达式"...", 其中"."表示一个字符
 //"..."表示三个字符
 System.out.println("abc".matches("..."));

 System.out.println("abcd".matches("..."));
 }
}
//输出结果
true
false

•如果要深究正则表达式背后的原理, 会涉及编译原理中自动机等知识, 此处不展开描述. 为了达到通俗易懂, 这里用较为形象的语言描述.
•Pattern可以理解为一个模式, 字符串需要与某种模式进行匹配. 比如Demo2中, 我们定义的模式是一个长度为3的字符串, 其中每个字符必须是a~z中的一个.
•我们看到创建Pattern对象时调用的是Pattern类中的compile方法, 也就是说对我们传入的正则表达式编译后得到一个模式对象. 而这个经过编译后模式对象, 会使得正则表达式使用效率会大大提高, 并且作为一个常量, 它可以安全地供多个线程并发使用.
•Matcher可以理解为模式匹配某个字符串后产生的结果. 字符串和某个模式匹配后可能会产生很多个结果, 这个会在后面的例子中讲解.
•最后当我们调用m.matches()时就会返回完整字符串与模式匹配的结果
•上面的三行代码可以简化为一行代码
System.out.println("abc".matches("[a-z]{3}"));
•但是如果一个正则表达式需要被重复匹配, 这种写法效率较低.

初步认识 . + * ?

•在介绍之前首先要说明的是, 正则表达式的具体含义不用强背, 各个符号的含义在Java官方文档的Pattern类描述中或网上有详细的定义. 当然能熟用就更好了.

public class Demo3 {
 /**
 * 为了省略每次写打印语句, 这里把输出语句封装起来
 * @param o
 */
 private static void p(Object o){
 System.out.println(o);
 }

 /**
 * . Any character (may or may not match line terminators), 任意字符
 * X? X, once or not at all 零个或一个
 * X* X, zero or more times 零个或多个
 * X+ X, one or more times 一个或多个
 * X{n} X, exactly n times x出现n次
 * X{n,} X, at least n times x出现至少n次
 * X{n,m} X, at least n but not more than m times 出现n~m次
 * @param args
 */
 public static void main(String[] args) {
 p("a".matches("."));
 p("aa".matches("aa"));
 p("aaaa".matches("a*"));
 p("aaaa".matches("a+"));
 p("".matches("a*"));
 p("a".matches("a?"));

 // d A digit: [0-9], 表示数字, 但是在java中对""这个符号需要使用进行转义, 所以出现d
 p("2345".matches("d{2,5}"));
 // .用于匹配"."
 p("192.168.0.123".matches("d{1,3}.d{1,3}.d{1,3}.d{1,3}"));
 // [0-2]指必须是0~2中的一个数字
 p("192".matches("[0-2][0-9][0-9]"));
 }
}
//输出结果
//全为true

范围

•[]用于描述一个字符的范围, 下面是一些例子

public class Demo4 {
 private static void p(Object o){
 System.out.println(o);
 }

 public static void main(String[] args) {
 //[abc]指abc中的其中一个字母
 p("a".matches("[abc]"));
 //[^abc]指除了abc之外的字符
 p("1".matches("[^abc]"));
 //a~z或A~Z的字符, 以下三个均是或的写法
 p("A".matches("[a-zA-Z]"));
 p("A".matches("[a-z|A-Z]"));
 p("A".matches("[a-z[A-Z]]"));
 //[A-Z&&[REQ]]指A~Z中并且属于REQ其中之一的字符
 p("R".matches("[A-Z&&[REQ]]"));
 }
}
//输出结果

全部为true

认识s w d - 下面介绍数字和字母的正则表达, 这是编程中使用最多的字符了.

关于

•这里重点介绍最不好理解的. 在Java中的字符串中, 如果要用到特殊字符, 必须通过在前面加进行转义.
•举个例子, 考虑这个字符串"老师大声说:"同学们,快交作业!"". 如果我们没有转义字符, 那么开头的双引号的结束应该在说:"这里, 但是我们的字符串中需要用到双引号, 所以需要用转义字符
•使用转义字符后的字符串为"老师大声说:"同学们,快交作业!"", 这样我们的原意才能被正确识别.
•同理如果我们要在字符串中使用, 也应该在前面加一个, 所以在字符串中表示为""
•那么如何在正则表达式中表示要匹配呢, 答案为"".
•我们分开考虑: 由于正则式中表示同样需要转义, 所以前面的表示正则表达式中的转义字符, 后面的表示正则表达式中本身, 合起来在正则表达式中表示.
•如果感觉有点绕的话请看下面代码

public class Demo5 {
 private static void p(Object o){
 System.out.println(o);
 }

 public static void main(String[] args) {
 /**
 * d A digit: [0-9] 数字
 * D A non-digit: [^0-9] 非数字
 * s A whitespace character: [ tnx0Bfr] 空格
 * S A non-whitespace character: [^s] 非空格
 * w A word character: [a-zA-Z_0-9] 数字字母和下划线
 * W A non-word character: [^w] 非数字字母和下划线
 */
 // s{4}表示4个空白符
 p(" nrt".matches("s{4}"));
 // S表示非空白符
 p("a".matches("S"));
 // w{3}表示数字字母和下划线
 p("a_8".matches("w{3}"));
 p("abc888&^%".matches("[a-z]{1,3}d+[%^&*]+"));
 // 匹配 
 p("".matches(""));
 }
}
//输出结果

全部为true

边界处理

•^在中括号内表示取反的意思[^], 如果不在中括号里则表示字符串的开头.

public class Demo6 {
 private static void p(Object o){
 System.out.println(o);
 }

 public static void main(String[] args) {
 /**
 * ^ The beginning of a line 一个字符串的开始
 * $ The end of a line 字符串的结束
 * b A word boundary 一个单词的边界, 可以是空格, 换行符等
 */
 p("hello sir".matches("^h.*"));
 p("hello sir".matches(".*r$"));
 p("hello sir".matches("^h[a-z]{1,3}ob.*"));
 p("hellosir".matches("^h[a-z]{1,3}ob.*"));
 }
}

练习:匹配空白行合email地址

•拿到一篇文章, 如何判断里面有多少个空白行? 用正则表达式能方便地进行匹配, 注意空白行中可能包括空格, 制表符等.
p(" n".matches("^[s&&[^n]]*n$"));
•解释: ^[s&&[^n]]*是空格符号但不是换行符, n$最后以换行符结束
•下面是匹配邮箱
p("liuyj24@126.com".matches("[w[.-]]+@[w[.-]]+.[w]+"));
•解释: [w[.-]]+以一个或多个数字字母下划线.或-组成, @接着是个@符号, 然后同样是[w[.-]]+, 接着.匹配., 最后同样是[w]+

Matcher类的matches(),find()和lookingAt()

•matches()方法会将整个字符串与模板进行匹配.
•find()则是从当前位置开始进行匹配, 如果传入字符串后首先进行find(), 那么当前位置就是字符串的开头, 对当前位置的具体分析可以看下面的代码示例
•lookingAt()方法会从字符串的开头进行匹配.

public class Demo8 {
 private static void p(Object o){
 System.out.println(o);
 }

 public static void main(String[] args) {
 Pattern pattern = Pattern.compile("d{3,5}");
 String s = "123-34345-234-00";
 Matcher m = pattern.matcher(s);

 //先演示matches(), 与整个字符串匹配.
 p(m.matches());
 //结果为false, 显然要匹配3~5个数字会在-处匹配失败

 //然后演示find(), 先使用reset()方法把当前位置设置为字符串的开头
 m.reset();
 p(m.find());//true 匹配123成功
 p(m.find());//true 匹配34345成功
 p(m.find());//true 匹配234成功
 p(m.find());//false 匹配00失败

 //下面我们演示不在matches()使用reset(), 看看当前位置的变化
 m.reset();//先重置
 p(m.matches());//false 匹配整个字符串失败, 当前位置来到-
 p(m.find());// true 匹配34345成功
 p(m.find());// true 匹配234成功
 p(m.find());// false 匹配00始边
 p(m.find());// false 没有东西匹配, 失败

 //演示lookingAt(), 从头开始找
 p(m.lookingAt());//true 找到123, 成功
 }
}

Matcher类中的start()和end()

•如果一次匹配成功的话start()用于返回匹配开始的位置, end()用于返回匹配结束字符的后面一个位置

public class Demo9 {
 private static void p(Object o){
 System.out.println(o);
 }

 public static void main(String[] args) {
 Pattern pattern = Pattern.compile("d{3,5}");
 String s = "123-34345-234-00";
 Matcher m = pattern.matcher(s);

 p(m.find());//true 匹配123成功
 p("start: " + m.start() + " - end:" + m.end());
 p(m.find());//true 匹配34345成功
 p("start: " + m.start() + " - end:" + m.end());
 p(m.find());//true 匹配234成功
 p("start: " + m.start() + " - end:" + m.end());
 p(m.find());//false 匹配00失败
 try {
 p("start: " + m.start() + " - end:" + m.end());
 }catch (Exception e){
 System.out.println("报错了...");
 }
 p(m.lookingAt());
 p("start: " + m.start() + " - end:" + m.end());
 }
}
//输出结果
true
start: 0 - end:3
true
start: 4 - end:9
true
start: 10 - end:13
false
报错了...
true
start: 0 - end:3

替换字符串

•想要替换字符串首先要找到被替换的字符串, 这里要新介绍Matcher类中的一个方法group(), 它能返回匹配到的字符串.
•下面我们看一个例子, 把字符串中的java转换为大写.

public class Demo10 {
 private static void p(Object o){
 System.out.println(o);
 }

 public static void main(String[] args) {
 Pattern p = Pattern.compile("java");
 Matcher m = p.matcher("java Java JAVA JAva I love Java and you");
 p(m.replaceAll("JAVA"));//replaceAll()方法会替换所有匹配到的字符串
 }
}
//输出结果
JAVA Java JAVA JAva I love Java and you

升级: 不区分大小写查找并替换字符串

•为了在匹配的时候不区分大小写, 我们要在创建模板模板时指定大小写不敏感
public static void main(String[] args) {
 Pattern p = Pattern.compile("java", Pattern.CASE_INSENSITIVE);//指定为大小写不敏感的
 Matcher m = p.matcher("java Java JAVA JAva I love Java and you");
 p(m.replaceAll("JAVA"));
}
//输出结果
JAVA JAVA JAVA JAVA I love JAVA and you

再升级: 不区分大小写, 替换查找到的指定字符串

•这里演示把查找到第奇数个字符串转换为大写, 第偶数个转换为小写
•这里会引入Matcher类中一个强大的方法appendReplacement(StringBuffer sb, String replacement), 它需要传入一个

StringBuffer进行字符串拼接.

public static void main(String[] args) {
 Pattern p = Pattern.compile("java", Pattern.CASE_INSENSITIVE);
 Matcher m = p.matcher("java Java JAVA JAva I love Java and you ?");
 StringBuffer sb = new StringBuffer();
 int index = 1;
 while(m.find()){
 //m.appendReplacement(sb, (index++ & 1) == 0 ? "java" : "JAVA"); 较为简洁的写法
 if((index & 1) == 0){//偶数
 m.appendReplacement(sb, "java");
 }else{
 m.appendReplacement(sb, "JAVA");
 }
 index++;
 }
 m.appendTail(sb);//把剩余的字符串加入
 p(sb);
}
//输出结果
JAVA java JAVA java I love JAVA and you ?

分组

•先从一个问题引入, 看下面这段代码

public static void main(String[] args) {
 Pattern p = Pattern.compile("d{3,5}[a-z]{2}");
 String s = "123aa-5423zx-642oi-00";
 Matcher m = p.matcher(s);
 while(m.find()){
 p(m.group());
 }
}
//输出结果
123aa
5423zx
642oi

•其中正则表达式"d{3,5}[a-z]{2}"表示3~5个数字跟上两个字母, 然后打印出每个匹配到的字符串.
•如果想要打印每个匹配串中的数字, 如何操作呢.
•首先你可能想到把匹配到的字符串再进行匹配, 但是这样太麻烦了, 分组机制可以帮助我们在正则表达式中进行分组.
•规定使用()进行分组, 这里我们把字母和数字各分为一组"(d{3,5})([a-z]{2})"
•然后在调用m.group(int group)方法时传入组号即可
•注意, 组号从0开始, 0组代表整个正则表达式, 从0之后, 就是在正则表达式中从左到右每一个左括号对应一个组. 在这个表达式中第1组是数字, 第2组是字母.

public static void main(String[] args) {
 Pattern p = Pattern.compile("(d{3,5})([a-z]{2})");//正则表达式为3~5个数字跟上两个字母
 String s = "123aa-5423zx-642oi-00";
 Matcher m = p.matcher(s);
 while(m.find()){
 p(m.group(1));
 }
}
//输出结果
123
5423
642

实战1: 抓取网页中的email地址(爬虫)

•假设我们手头上有一些优质的资源, 打算分享给网友, 于是便到贴吧上发出一个留邮箱发资源的帖子. 没想到网友热情高涨, 留下了近百个邮箱. 但逐个复制发送太累了, 我们考虑用程序实现.
•这里不展开讲发邮件部分, 重点应用已经学到的正则表达式从网页中截取所有的邮箱地址.
•首先获取一个帖子的html代码随便找了一个, 点击跳转, 在浏览器中点击右键保存html文件
•接下来看代码:

public class Demo12 {
 public static void main(String[] args) {
 BufferedReader br = null;
 try {
 br = new BufferedReader(new FileReader("C:emailTest.html"));
 String line = "";
 while((line = br.readLine()) != null){//读取文件的每一行
 parse(line);//解析其中的email地址
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }finally {
 if(br != null){
 try {
  br.close();
  br = null;
 } catch (IOException e) {
  e.printStackTrace();
 }
 }
 }
 }

 private static void parse(String line){
 Pattern p = Pattern.compile("[w[.-]]+@[w[.-]]+.[w]+");
 Matcher m = p.matcher(line);
 while(m.find()){
 System.out.println(m.group());
 }
 }
}
//输出结果
2819531636@qq.com
2819531636@qq.com
2405059759@qq.com
2405059759@qq.com
1013376804@qq.com
...

实战2: 代码统计小程序

•最后的一个实战案例: 统计一个项目中一共有多少行代码, 多少行注释, 多少个空白行. 不妨对自己做过的项目进行统计, 发现不知不觉中也是个写过成千上万行代码的人了...
•我在github上挑选了一个项目, 是纯java写的小项目, 方便统计. 点击跳转
•下面是具体的代码, 除了判断空行用了正则表达式外, 判断代码行和注释行用了String类的api

public class Demo13 {
 private static long codeLines = 0;
 private static long commentLines = 0;
 private static long whiteLines = 0;
 private static String filePath = "C:TankOnline";
 public static void main(String[] args) {
 process(filePath);
 System.out.println("codeLines : " + codeLines);
 System.out.println("commentLines : " + commentLines);
 System.out.println("whiteLines : " + whiteLines);
 }
 /**
 * 递归查找文件
 * @param pathStr
 */
 public static void process(String pathStr){
 File file = new File(pathStr);
 if(file.isDirectory()){//是文件夹则递归查找
 File[] fileList = file.listFiles();
 for(File f : fileList){
 String fPath = f.getAbsolutePath();
 process(fPath);
 }
 }else if(file.isFile()){//是文件则判断是否是.java文件
 if(file.getName().matches(".*.java$")){
 parse(file);
 }
 }
 }
 private static void parse(File file) {
 BufferedReader br = null;
 try {
 br = new BufferedReader(new FileReader(file));
 String line = "";
 while((line = br.readLine()) != null){
 line = line.trim();//清空每行首尾的空格
 if(line.matches("^[s&&[^n]]*$")){//注意不是以n结尾, 因为在br.readLine()会去掉n
  whiteLines++;
 }else if(line.startsWith("/*") || line.startsWith("*") || line.endsWith("*/")){
  commentLines++;
 }else if(line.startsWith("//") || line.contains("//")){
  commentLines++;
 }else{
  if(line.startsWith("import") || line.startsWith("package")){//导包不算
  continue;
  }
  codeLines++;
 }
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if(null != br){
 try {
  br.close();
  br = null;
 } catch (IOException e) {
  e.printStackTrace();
 }
 }
 }
 }
}
//输出结果
codeLines : 1139
commentLines : 124
whiteLines : 172

贪婪模式与非贪婪模式

•经过两个实战后, 相信大家已经掌握了正则表达式的基本使用了, 下面介绍贪婪模式与非贪婪模式. 通过查看官方api我们发现Pattern类中有如下定义:

Greedy quantifiers 贪婪模式

X?  X, once or not at all
X*  X, zero or more times
X+  X, one or more times
X{n}    X, exactly n times
X{n,}   X, at least n times
X{n,m}  X, at least n but not more than m times

Reluctant quantifiers 非贪婪模式(勉强的, 不情愿的)

X?? X, once or not at all
X*? X, zero or more times
X+? X, one or more times
X{n}?   X, exactly n times
X{n,}?  X, at least n times
X{n,m}? X, at least n but not more than m times 

Possessive quantifiers  独占模式

X?+ X, once or not at all
X*+ X, zero or more times
X++ X, one or more times
X{n}+   X, exactly n times
X{n,}+  X, at least n times
X{n,m}+ X, at least n but not more than m times

•这三种模式表达的意思是一样的, 在前面的讲解中我们全部使用的是贪婪模式. 那么其他两种模式的写法有什么区别呢? 通过下面的代码示例进行讲解.

public static void main(String[] args) {
 Pattern p = Pattern.compile(".{3,10}[0-9]");
 String s = "aaaa5bbbb6";//10个字符
 Matcher m = p.matcher(s);
 if(m.find()){
 System.out.println(m.start() + " - " + m.end());
 }else {
 System.out.println("not match!");
 }
}
//输出结果
0 - 10

•正则表达式的意思是3~10个字符加一个数字. 在贪婪模式下匹配时, 系统会先吞掉10个字符, 这时检查最后一个是否时数字, 发现已经没有字符了, 于是吐出来一个字符, 再次匹配数字, 匹配成功, 得到0-10.
•下面是非贪婪模式演示(勉强的, 不情愿的)

public static void main(String[] args) {
 Pattern p = Pattern.compile(".{3,10}?[0-9]");//添加了一个?
 String s = "aaaa5bbbb6";
 Matcher m = p.matcher(s);
 if(m.find()){
 System.out.println(m.start() + " - " + m.end());
 }else {
 System.out.println("not match!");
 }
}
//输出结果
0 - 5

•在非贪婪模式下, 首先只会吞掉3个(最少3个), 然后判断后面一个是否是数字, 结果不是, 在往后吞一个字符, 继续判断后面的是否数字, 结果是, 输出0-5

•最后演示独占模式, 通常只在追求效率的情况下这么做, 用得比较少

public static void main(String[] args) {
 Pattern p = Pattern.compile(".{3,10}+[0-9]");//多了个+
 String s = "aaaa5bbbb6";
 Matcher m = p.matcher(s);
 if(m.find()){
 System.out.println(m.start() + " - " + m.end());
 }else {
 System.out.println("not match!");
 }
}
//输出结果
not match!

•独占模式会一下吞进10个字符, 然后判断后一个是否是数字, 不管是否匹配成功它都不会继续吞或者吐出一个字符.

总结

以上所述是小编给大家介绍的正则表达式在Java中的使用,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对来客网网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!